Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts.
نویسندگان
چکیده
This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga(2)O(3) as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10(-1)A/cm(2) at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.
منابع مشابه
Comparison of SAM-Based Junctions with Ga2O3/EGaIn Top Electrodes to Other Large-Area Tunneling Junctions
This paper compares the J(V) characteristics obtained for self-assembled monolayer (SAM)-based tunneling junctions with top electrodes of the liquid eutectic of gallium and indium (EGaIn) fabricated using two different procedures: (i) stabilizing the EGaIn electrode in PDMS microchannels and (ii) suspending the EGaIn electrode from the tip of a syringe. These two geometries of the EGaIn electro...
متن کاملMolecular rectification in metal-SAM-metal oxide-metal junctions.
This Article compares the ability of self-assembled monolayers (SAMs) of alkanethiolates with ferrocene (Fc) head groups (SC(11)Fc), and SAMs of alkanethiolates lacking the Fc moiety (SC(10)CH(3) and SC(14)CH(3)), to conduct charge. Ultraflat surfaces of template-stripped silver (Ag(TS)) supported these SAMs, and a eutectic alloy of gallium and indium (EGaIn), covered with a skin of gallium oxi...
متن کاملElectrical Resistance of Ag−S(CH2)n−1CH3//Ga2O3/EGaIn Tunneling Junctions
Tunneling junctions having the structure Ag−S(CH2)n−1CH3// Ga2O3/EGaIn allow physical−organic studies of charge transport across selfassembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SA...
متن کاملThe SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.
The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify c...
متن کاملElectrical Resistance of AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn Tunneling Junctions
Tunneling junctions having the structure Ag−S(CH2)n−1CH3// Ga2O3/EGaIn allow physical−organic studies of charge transport across selfassembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 °C) oxidizes and adsorbs―like other high-energy surfaces―adventitious contaminants. The interface between the EGaIn and the SA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 24 شماره
صفحات -
تاریخ انتشار 2011